If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5r^2+56r+60=0
a = 5; b = 56; c = +60;
Δ = b2-4ac
Δ = 562-4·5·60
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(56)-44}{2*5}=\frac{-100}{10} =-10 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(56)+44}{2*5}=\frac{-12}{10} =-1+1/5 $
| 4x-11+x=6x-4 | | 4=10–2r | | 2(x+8=3(x-8) | | M+-4m=-6 | | 1+3z=7 | | 5=7w+8w^2 | | 9x-2=273x-1 | | 10(x+2)+3(x-1)=9(x+2 | | 3x-12=2(2x-6) | | x+20=-26 | | 4.8+10m=8.16 | | 5y+20=7y | | 7m-(2-4m)=64 | | 5b+8=-103 | | s2– -4= 6 | | 3.05x-2.4-12.78x+5.7=2.95x-4.72x+3.9-4.67 | | 4x=5x–12 | | 6x+16=4x | | 7+5c=c+4 | | 6x-(3x+88)=16 | | −14=1/4x | | -y-3y=-18 | | -2w+-8=2 | | (-14)=5w-4 | | 2(x+2)-3=1 | | 2(x+2)–4x=12 | | -4x+7x-16=3(x-4)-25 | | -7-x=0 | | 19+8t=34 | | 72/h=24 | | Y-6-4y=3 | | 8(5+4x)+11=-5(3-7x) |